
Generative Inpainting: A Survey Study

Kien Tran Manoj Parmar Palash Choudhary Tanmay Kenjale
Georgia Institute of Technology

Atlanta, GA 30332
ktran332@gatech.edu, manoj.parmar@gatech.edu, palash.choudhary@gatech.edu, tkenjale3@gatech.edu

Abstract

Image inpainting is one of the image restoration tech-
niques that involves filling in missing or damaged pixels
in an image. It has several applications such as object
removal, image restoration, etc. Generative inpainting is
a class of techniques that use generative models to fill in
the missing parts. It is superior to classical approaches
due to the ability to ”hallucinate” content from the learned
distribution and to do it in a way that is consistent with
the context surrounding the missing patch. Recent years
have seen significant advancements in the field, especially
the shift from GAN-based models to Diffusion-based models
with tools like DALLE-2 and Stable diffusion. For this rea-
son, we are motivated to conduct an academic survey study
of the generative inpainting techniques. This paper aims
to understand the basic principles, differences, strengths,
and weaknesses of different inpainting techniques, espe-
cially DCGAN [10], Inpainting with contextual attention
[16], and diffusion-based models [11].

We have implemented and evaluated these approaches
on the Places205 dataset. We found that the diffusion-based
model with pre-trained weights performs the best, while
DCGAN and Contextual Attention achieve similar level of
results. We also found that training these models was highly
time-consuming and computationally costly and that using
pre-trained weights is the best option.

1. Introduction/Background/Motivation
Image inpainting is a challenging computer vision task

that involves filling in missing or corrupted parts of an im-
age in a visually consistent manner. The goal of image
inpainting is to develop algorithms that can learn to un-
derstand the underlying structure and context of an image
and fill new content that seamlessly blends with the exist-
ing content.

The initial days saw the utilization of patch-based tech-
niques and texture synthesis. A patch-based approach typ-
ically synthesizes missing contents by copying and past-

ing similar patches from known image contexts. These
approaches can work well, especially in stationary back-
ground inpainting with repeating patterns. However, these
approaches can fall short in completing large missing re-
gions of complex scenes for semantic inpainting. This is
because patch-based approaches heavily rely on patch-wise
matching by low-level features. Such a technology is un-
able to synthesize contents for which similar patches do not
exist in known image contexts.

The introduction of the Generative Adversarial Network
(GAN) framework in 2014 led to deep learning based gen-
erative solutions to inpainting. Generative models are su-
perior to classical approaches due to the ability to ”halluci-
nate” content from the learned distribution and to do it in
a way that is consistent with the context surrounding the
missing patch.

A study in 2018 used a Coarse-to-Fine architecture with
GAN losses for both the local output and global output [16].
Coarse-to-Fine involves one stage that produces an inter-
mediate inpainting result and a second stage that produces
the final result. This approach was limited because it only
worked well on rectangular cutouts for inpainting. A study
in 2019 built upon the previous approach but extended it to
work with free-form cutouts, and it achieved this by using
gated convolution and sketch input masks [15]. The use of
gated convolution adds computational complexity, and so
an approach in 2021 avoided this module and built a cus-
tom block called Aggregated COntextual-Transformation
(AOT) [17] that was able to outperform gated convolution.
Another benefit of the AOT architecture is that it consists of
only one stage instead of two.

More recently, diffusion-based models have outper-
formed GAN-based models such as the ones discussed
above. The diffusion model works by gradually injecting
noise into the image and training a model, often a U-Net, to
learn the denoising process. Diffusion can alleviate GAN’s
issues of vanishing gradients and the difficulty of balanc-
ing the generator and discriminator. The approach in [11]
shows improvements over previous GAN models for in-
painting.

1



Inpainting has wide-ranging applications in various do-
mains, such as image editing, restoration, and completion.
One such famous implementation of inpainting is the magic
eraser feature of Google Pixel smartphones. It helps remove
unwanted objects from the images. Further, inpainting can
also be used to enhance old pictures and documents.

For the purpose of our project, we trained the model on a
subset of the Places205 dataset [1]. The Places205 dataset is
a large-scale scene-centric dataset with 205 common scene
categories. The training dataset contains around 2.5M im-
ages from these categories. In the training set, each scene
category has a minimum of 5,000 and a maximum of 15,000
images. The subset chosen for our training data is 10,000
images for DCGAN and 1000 images for Contextual Atten-
tion approach. For diffusion-based approach, we are using
a pre-trained model. Further, we compare the 3 models on
an evaluation set of randomly selected 500 images from the
same dataset. The dataset has images of size 256x256, and
we utilized both rectangular and free-form masks with mask
areas between 10%-25%.

2. Approach

2.1. DCGAN

We first implemented a deep convolutional generative
adversarial network (DCGAN) as a baseline approach to
image inpainting [10]. This approach extends the traditional
GAN [6] by using Convolution and Transposed Convolu-
tion layers instead of fully-connected layers.

Our DCGAN consists of a generator model and a dis-
criminator model. The generator model inputs a masked
image and outputs the inpainted image. The architecture of
the generator is inspired by a U-Net [12]. The U-Net ap-
plies 6 layers of contraction blocks followed by 6 layers of
expansion blocks. The contraction block consists of a 2D
Convolution with a kernel size of 4 and stride of 2, a Batch
Normalization layer, and LeakyReLU activation. Each con-
traction halves the size of the image and doubles the number
of channels. An expansion block consists of a 2D Trans-
posed Convolution with a kernel size of 4 and stride of 2, a
Batch Normalization layer, and ReLU activation. The final
expansion block has a Tanh activation. Each expansion dou-
bles the size of the image and halves the number of chan-
nels. We also employ skip connections for better gradient
flow.

The discriminator model inputs training images and the
outputs of the generator and outputs a probability that the
input is a real image as opposed to a generated image. The
architecture consists of 6 contraction blocks with a 2D Con-
volution and Sigmoid activation at the end.

The discriminator was trained with binary cross-entropy
loss and the generator was trained with a combination of
the discriminator loss and an L1 loss. Both models utilized

the Adam optimizer with a learning rate of 0.0002. The
general GAN implementation was inspired by the PyTorch
DCGAN tutorial [8] and the architecture was inspired by an
implementation by [5].

Since DCGAN is a relatively old technique and one that
is not specifically designed for image inpainting, we ex-
pected the results to be poor. We also expected that opti-
mizing the model to be difficult because of the difficulties
involved in balancing the generator and discriminator. In
practice, our expectations were correct. With the default
parameters from our research, we found that the model pro-
duced pixelated images with grid-like artifacts. We also
found that the discriminator performed too well, causing the
generator’s performance to deteriorate. We will go over our
problem-solving process and fine-tuning in the next section.

2.2. Inpainting with Contextual Attention

The second approach that we used was generative in-
painting using contextual attention [16]. Earlier approaches
often created distorted structures or blurry textures inconsis-
tent with surrounding areas. This is due to the ineffective-
ness of convolution neural networks in explicitly borrowing
or copying information from distant spatial locations.

The network consists of two stages as shown in Figure 1.
The first stage is a ”coarse” network which makes an initial
prediction for the image. The second stage is a ”refinement”
network that takes as input this coarse image to generate
better results with contextual attention integrated into this
stage.

The general architecture for the coarse network follows
an encoder-decoder structure with a total of 17 layers. The
initial layers are contraction blocks of 2D convolution lay-
ers to decrease the image size and increase the number of
channels. 4 dilated convolution layers are also used to have
a wider range of receptive fields and extract information
from far apart regions. The decoder architecture uses de-
convolution layers to restore the image to its original size.

The second stage of the process integrates contextual
attention, which uses the features of previously known
patches as filters to process the generated patches. This is
done by matching generated patches with known contex-
tual patches using convolution, weighing relevant patches
using channel-wise softmax, and reconstructing the gener-
ated patches with contextual patches using deconvolution.
A spatial propagation layer is also included to encourage
spatial coherence. To enable the network to hallucinate new
content, a parallel convolutional pathway is used alongside
the contextual attention pathway. These two pathways are
combined and fed into a single decoder to generate the final
output.

Finally, the discriminator model is trained on input im-
ages and the generated image from the refinement network
to output a probability of a real image vs a fake image.



Figure 1. Two-Stage Contextual Attention Architecture

There are two discriminators - a global and a local discrim-
inator. The global discriminator assesses if the completed
image is coherent as a whole, while the local discrimina-
tor focuses on a small area centered at the generated region
to enforce local consistency. Both the discriminators have
4 convolution layers to generate high-level features and a
final dense layer to output the probabilities.

The generator network uses the ELUs as activation
functions instead of ReLU while the discriminator uses
Leaky ReLU as activation with alpha = 0.2. The coarse
network is trained with the reconstruction loss explic-
itly (L1 loss), while the refinement network is trained
with the reconstruction as well as WGAN-GP losses (in-
cluding gradient penalty) [2]. We used Adam opti-
miser for generator and discriminator models with a learn-
ing rate of 0.0001. We further talk about the results
in detail in the experiments section. The final code
is available here. https://github.com/Manoj98/
generative-inpainting. The following code was
used as a baseline for the above code. [4]

2.3. Diffusion-based Model

The third approach that we used was diffusion. The dif-
fusion model works by gradually injecting noise into the im-
age and training a model, often an Unet, to learn the denois-
ing process. The denoising model can be easily conditioned
by the unmasked area of the image or external information
such as text description. This characteristic makes the dif-
fusion approach more versatile. In addition, inference in
the diffusion-based in-painting model starts with complete
noise in the masked area and then gradually removes the
noise conditioned on the unmasked area, which allows the
model to create complex and refined outputs. This infer-
ence process, however, will be time-consuming due to the
loop through multiple time steps.
For the implementation of the diffusion model, we ini-
tially planned to replicate Saharia et al.[13] [9] and train
the model ourselves on the Places205 dataset. However,

we soon found out that the training of the model was too
slow and computationally expensive to create meaningful
results in a short amount of time. For that reason, we de-
cided to leverage the Stable Diffusion model[11] with pre-
trained weights and codes by Platen et al.[14]. We adapted
the model for the in-painting task by writing the transfor-
mation pipeline for the input and output of the pre-trained
diffusion model. We then run inference on the shared test
set and compared the results with other models that we have
implemented.

3. Experiments and Results

3.1. Experiment setup

We randomly selected a 500-image subset of the
Places205 dataset for evaluation purposes. Each image
will be cropped by either a rectangular mask or a free-
form mask and then fed as input to the inpainting models.
The prediction results are then evaluated using 3 metrics:
Frechet Inception Distance (FID)[7] - code implementation
by Brownlee[3] from Machine Learning Mastery, Mean
Squared Error (MSE), and Mean Absolute Error (MAE).
In addition, we also randomly selected samples and make
qualitative assessments about the strengths and weaknesses
of different methods.
Due to a limitation of the implementation, the Contextual
Attention model works with rectangular crops only whereas
the other 2 models work with free-form crops. For that rea-
son, we decided to limit the total masked area to 10% -25%
of the original image for both masking methods, thus mak-
ing the performance on the in-painting task comparable.

3.2. DCGAN Experiments

We trained the DCGAN model in PyTorch on 10000 im-
ages of size 256x256 from the Places205 dataset. Each im-
age was paired with a randomly selected free-form crop.
We trained the models for multiple epochs until the genera-
tor’s validation loss was no longer improving significantly,

https://github.com/Manoj98/generative-inpainting
https://github.com/Manoj98/generative-inpainting


indicating that maximum performance was reached. This
typically occurred around 22 epochs.

For validation purposes, we looked at both the loss com-
paring the generator’s entire image output to the ground
truth image and the loss comparing the generator’s output
for the inpainting region compared to the same region in
the ground truth. The former gives an idea of how well the
model can reconstruct the overall image and the latter gives
an idea of how well the model can inpaint.

The main parameters we chose to tune were the genera-
tor loss function and the hidden dimension size of generator
and discriminator. We initially started with a generator loss
function that was purely based on adversarial loss from the
discriminator. We hypothesized that adding a reconstruc-
tion loss to the generator that compared the generator out-
puts to the ground truth images would help train the genera-
tor to produce good inpainting results. We tried both L1 and
L2 reconstruction losses, and we found that L1 produced vi-
sually better results whereas L2 produced many artifacts.

Figure 2. Diverging reconstruction loss when discriminator is
stronger than the generator

As for hidden dimension sizes, we started with size 512
for both the generator and discriminator. While this worked
well for a few epochs of training, we found that after some
time the discriminator loss would converge close to zero and
the generator loss would increase rapidly as seen in Figure
2. We hypothesized this was because the discriminator was
learning too quickly and was not allowing the generator to
learn.

To solve this problem, we decreased the discriminator’s
hidden size progressively until we reached a desirable level
of generator performance. We found that a discriminator
hidden size of 64 worked the best. We also found that in-
creasing the hidden size of the generator had little effect on
performance while greatly increasing computation cost, but
decreasing the hidden size of the generator severely reduced

performance.
In general, the model’s performance during training and

validation was similar, indicating that there was little over-
fitting present. We believe that the DCGAN architecture
is not sufficient for good generative inpainting, and there-
fore the model underfits. From our qualitative observations,
we see that DCGAN does a reasonable job at capturing the
correct colors and shapes of masked regions but fails to hal-
lucinate fine details and results in blurry areas. For such
a relatively simple and general-purpose model, the results
exceeded our expectations.

3.3. Contextual Attention Experiments

The whole network was trained in PyTorch on 1000
sample images from Places205 data. For training, we
used images of resolution 256x256 while the rectangular
masks were created at random with the largest hole size of
128x128. The batch size selected for training was 16. The
model in the original paper was trained for 50K iterations
to converge. However, due to resource constraints, we were
able to train it for only 7500 iterations due to which the re-
sults haven’t converged yet which can be seen in Figure 3.

The model was trained on Nvidia A100 GPUs using
Google Colab Pro which took around 5 hours to train
for 1000 images. We have summarized the qualitative
and quantitative results in the results comparison section.
Specifically, the reconstruction error (L1 error) goes down
from 0.092340 to 0.064443 over a span of 7500 iterations.

3.4. Results comparison

Finally, we compare the results of different implemen-
tations both quantitatively and qualitatively. Table 1 be-
low shows the quantitative evaluation of a DCGAN model,
a Contextual Attention model, and a pre-trained diffusion
model on the inpainting task. It is clear that the Stable
Diffusion model vastly outperformed the other two mod-
els on FID, highlighting the effectiveness of the diffusion
method. Regarding MSE and MAE, however, the 3 models
have quite comparable results. Figure 3 shows the qualita-

Table 1. Performance comparison

Models FID MSE MAE

DCGAN 486.39 0.086 0.140
Contextual Attention 290.13 0.162 0.141
Stable Diffusion (Pre-trained) 121.24 0.158 0.209

tive output of the model for a few random images. The out-
put from the Stable Diffusion model is quite natural, only
show weakness when zooming into the details. The Stable
Diffusion model can also ”hallucinate” objects that were
not there to fill in the blank. However, this dataset con-
sists mostly of places without many people or other objects,



Figure 3. Inpainting results of 3 different methods

which means hallucinations can be a weakness if compar-
ing the ground truth and the generated image directly us-
ing MSE or MAE. The Contextual Attention model demon-
strates a good understanding of the macrostructure of the
image but its patches are pixelated in nature and lack de-
tails, which can be an easy red flag to the human eye. The
DCGAN model achieves the best MSE and MAE, but has
the worst FID. The low FID performance shows clearly in
Figure 3, where its patches are foggy and too smooth.

Comparing the quantitative and the qualitative evalua-
tion, FID seems to align better with human perception when
it comes to evaluating the in-painting task. According to
this metric, stable diffusion is the best model overall.

4. Work Division
Table 2 presents the contributions of each team mem-

ber in the project. All the team members have contributed
equally to the project. Among the four of us, we have devel-
oped 2 models, DCGAN and Contextual Attention, adapted
a pre-trained Diffusion-based model, and evaluated them on
a shared test set. The heavy lifting for DCGAN was done by
Tanmay Kenjale, Contextual Attention was done by Manoj
Parmar and Palash Choudhary, and Diffusion-based model
and evaluation were done by Kien Tran. All the other work
including report writing was divided equally.

References
[1] Places205 Dataset. https://datasets.

activeloop.ai/docs/ml/datasets/
places205-dataset/. 2

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan, 2017. 3

[3] Jason Brownlee. How to implement the frechet in-
ception distance (fid) for evaluating gans, 2019.
https://machinelearningmastery.com/how-to-implement-
the-frechet-inception-distance-fid-from-scratch/. 3

[4] daa233. Generative inpainting with contextual atten-
tion in pytorch. https://github.com/daa233/
generative-inpainting-pytorch, 2021. 3

[5] Qiwen Fu, Yuxin Yang, and You Guan. Image inpainting and
object removal with deep convolutional gan, 2018. 2

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 2

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. 2017. 3

[8] Nathan Inkawhich. Dcgan tutorial. 2
[9] Liangwei Jiang. Janspiry/palette-image-to-image-diffusion-

models: Unofficial implementation of palette: Image-to-
image diffusion models by pytorch, 2022. 3

[10] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks, 2016. 1, 2

https://datasets.activeloop.ai/docs/ml/datasets/places205-dataset/
https://datasets.activeloop.ai/docs/ml/datasets/places205-dataset/
https://datasets.activeloop.ai/docs/ml/datasets/places205-dataset/
https://github.com/daa233/generative-inpainting-pytorch
https://github.com/daa233/generative-inpainting-pytorch


Student Name Contributed Aspects Details
Kien Tran Data Loader, Diffusion-based model, Eval-

uation
Extract free-form masks and create data
loader; Research, adapt, and run diffusion-
based model; Evaluate results across all
methods, Create visualization and write re-
port

Manoj Parmar Rectangular mask creation, Contextual At-
tention model, Report

Research on different approaches, Extract
rectangular masks; Create generator net-
work; Model trainer, Create utils for the
code, Write report

Palash Choudhary Random mask creation, Contextual Atten-
tion model, Report

AOT Paper Survey, Create randomized
masks; Create discriminator network;
Model validation, Write report

Tanmay Kenjale DCGAN model, Report Researched different DCGAN implemen-
tations and adapted different techniques to
inpainting; Model finetuning and valida-
tion; Write report

Table 2. Contributions of team members

[11] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 1, 3

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 2

[13] Chitwan Saharia, William Chan, Huiwen Chang, Chris A.
Lee, Jonathan Ho, Tim Salimans, David J. Fleet, and Mo-
hammad Norouzi. Palette: Image-to-image diffusion mod-
els, 2021. 3

[14] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro
Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,
and Thomas Wolf. Diffusers: State-of-the-art diffu-
sion models. https://github.com/huggingface/
diffusers, 2022. 3

[15] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas Huang. Free-form image inpainting with gated con-
volution, 2019. 1

[16] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S. Huang. Generative image inpainting with contex-
tual attention, 2018. 1, 2

[17] Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Bain-
ing Guo. Aggregated contextual transformations for high-
resolution image inpainting, 2021. 1

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

