
Link Prediction: Product
Recommendation for Instacart
CSE 6240 Web Search and Text Mining Project Final Presentation

Kien Tran, Tanmay Kenjale, Yu-Ching Chen, Chase Harrington

Group 1

1. Introduction

2. Dataset

3. Methods

4. Experiments and results

Agenda

Introduction

• We aim to use the Instacart dataset to develop a user-product recommendation
system

• Frame problem as a bipartite graph link prediction problem
• Two classes of nodes representing users and products

• Edges between a user node and a product node represent a user purchasing a product

• Successfully predicting edges between nodes, and recommending appropriate
items, can increase user satisfaction and potentially increase app usage

Introduction and Motivation

Dataset

Dataset Introduction

• Kaggle – Instacart Market Basket Analysis

• Our data consists of purchases made by users on Instacart

• 49K product nodes and 101K user nodes

• 9.3 million user-product pairs (edges)

• Data is grouped into orders that each contain a user and the

products purchased in the order

• Data contains information about purchase time, time since previous

order, add-to-cart sequence, and product repurchase

https://www.kaggle.com/competitions/instacart-market-basket-analysis/data

• Step 1: Remove users with fewer than 10 purchases

• Step 2: Generate user features by aggregating order data (RFM - Recency, Frequency, Monetary)
and generate item features by creating text embeddings from product descriptions

• Step 3: Employ temporal splitting and only keep new links as positive labels

• Label edges: The test label contains only the new product in the most recent basket (t) for each user, the
validation label in the second most recent basket (t-1) for each user, and the train label in the third most
recent basket (t-2) for each user. These are positive labels.

• Graph edges: All products bought before the basket that was used as labels

• Step 4: Generate negative samples with rate = 1, meaning for each user, we generate a random
negative sample for each positive labels in the label edges described above.

Data Preprocessing

Methods

1) Matrix Factorization (MF) - baseline

2) Node2vec - baseline

3) GraphSAGE

4) Graph Attention Network (GAT)

Models

• Use train set of positive and negative samples to create a sparse adjacency
matrix

• Au,p=1 if an edge exists between user u and product p, 0 otherwise

• Implement Stochastic Gradient Descent on the adjacency matrix to generate 128-
dimensional user and product embeddings

• For each edge in the test set, perform a simple cross-product between the user
and product embedding to generate a predicted score for the user-product pair

• If the predicted score is greater than a predetermined threshold value, then we predict a link;
otherwise, we do not predict a link

• We define the threshold value 0<t<1 such that the performance on the test data is
maximized; t=0.53

• ROC-AUC score on test data: 0.822

Matrix Factorization (MF)

• Trained a Node2vec model for embedding each node
• Set p=1, q=2 because we expect users would be more interested in neighbor items

• Set the dimension of embedding as 128

• Generated link embeddings by concatenating Node2vec node embeddings for
each link

• The dimension of link embeddings is 256

• Trained an MLP Classifier to predict the edges existence
• Using the pre-processing train/val/test set of positive and negative edges

• ROC-AUC score on the test data: 0.935

Node2vec

GraphSAGE vs Graph Attention Network (GAT)

GraphSAGE

• GraphSAGE learned a general transformation
function to aggregate information from
neighboring nodes and pass-on the processed
information to the next layer.

• With more than 2 layers of SAGEConv, the model
should be able to learn the patterns equivalent to
any collaborative filtering approaches (e.g. user –
item – other user).

• GraphSAGE is also easy to train since it take a
sample from the neighboring nodes instead of the
whole graph.

• We use an implementation of Hamilton et al (2017)
in the pytorch-geometric library.

Graph Attention Network

• Similar to GraphSAGE, Graph Attention
Convolutional layer (GATConv) takes information
from neighboring nodes, process it, and pass on to
the next layer.

• The difference is GATConv can use the attention
mechanism to learn the importance of neighboring
nodes to process accordingly.

• In addition, using multi-head also enable learning
more complex patterns => Overall GAT is a more
flexible network.

• We use the implementation created by Brody et al
(2021), where they generalize the original work
from Morris et al (2018) and demonstrated
superior performance

We chose GraphSAGE and GAT to implement due to their end-to-end nature, which in theory is superior
compared to Node2Vec models, and the flexibility to customize the interaction function, which is superior
compared to the matrix factorization approach.

Architecture of GNN models for link prediction

Products’ text-

embedding features

Users’ RFM

aggregated features

Node2Vec

embedding features

⧺

Internal NCF-

inspired

embeddings

⧺

Linear projection

to hidden_dim

Linear projection

to hidden_dim

Stacked graph

convolutional

layers (GAT or

GraphSAGE),

ReLU activation.

+

+

User

representation

Product

representation

Interaction

function (MLP)

Graph

Edges

Label

Edges

Predicted

probability

Binary cross

entropy loss

Data

tensors

Learnable

parameters ⧺ Concatenate +
Element-wise

sum

Optional

Experiments and results

GNN models experiment setup

Experiments Model specifications
Training

specifications

#1: Test option

combinations

• Using GraphSAGE, mean agg, fixed convolutional Depth = 3 and Hidden Size = 256.

• Architecture options:
• Vanilla GraphSAGE
• GraphSAGE + NCF-inspired Embeddings (add learnable user and item

embeddings to increase expressiveness).
• Feature options:

• Baseline Features Approach: Only input generated user and product features.
• Advanced Features: Concatenate with additional features from Node2vec.

Early stopping: when

validation roc_auc is worse
than previous epoch

Hardware: Google Colab
GPU (15 GB of GPU RAM)

#2: GraphSAGE

tuning

• Depth and Size tuning:

• Depth - number of graph convolutional layers: [2, 3]
• Size - hidden layer dimension: [128, 256, 512]

#3: Graph

Attention Network
tuning

• Size and Attention heads tuning:

• Size - hidden layer dimension: [128, 256, 512]
• Number of attention heads: [1, 2, 4, 8]

Hardware: Google Colab

premium GPU (40 GB of
GPU RAM).

Evaluation metrics: ROC-AUC (main), and other classification metrics: F1-score, Precision, Recall

Ranking metrics such as MRR, MAE were not used for evaluation due to the high complexity of predicting and ranking all 50,000 products for each user.

Experiment #1 results

Baseline Features Advanced Features

Vanilla GraphSAGE AUC = 0.920 AUC = 0.951

GraphSAGE + NCF

Embeddings
AUC = 0.932 AUC = 0.937

• Vanilla GraphSAGE + Advanced features seems to
be the best configuration. This might stem from the
random walk help incorporate long-distance
information.

• GraphSAGE + NCF embedding models fit very well
and very quick to the training set. But they also
easily overfit and stop in just 3-4 epochs.

• Vanilla GraphSAGE is by far the worst performer, not
even achieve Node2Vec Baseline performance.

• We also found that the models’ performance on
validation set closely resemble their performance
on the test set.

We tuned the chosen Vanilla GraphSAGE model w/ Advanced Features further by optimizing the number of layers
and the hidden size

Experiment 2 result: GraphSAGE Depth and Size

Hidden Size (# Layers = 2) AUC

128 0.951

256 0.952

512 0.951

Layers (Hidden = 256) AUC

2 0.952

3 0.951

• Two layers and Hidden
Size = 256 is the best
configuration

• Hidden Size = 128 train
faster but slightly more
overfit to the train set
=> worse performance
on the validation set

Experiment 3: Graph Attention Network (GAT)

• Best GAT had hidden size of 256 and 4 attention heads

• Other GAT configurations stop much earlier with lower
performance, which indicate they have lower
expressiveness and/or overfit more to the training set

• The best GraphSAGE model outperformed the best GAT
model by a large margin

We chose to use a Vanilla GAT with advanced features, since we found this worked well with GraphSAGE

• Good input features is pivotal in improving
performance of Graph convolutional models =>
More extensive feature engineering.

• GAT’s performance was not as good as
GraphSAGE => Additional experimentation with
more expressive GAT model and further hyper
parameter tuning.

• Combining normal features with Node2Vec
embedding features achieve the best results so far,
we hypothesized that it’s due to long-distance
information in the random walks => Worth
exploring other architectures that can incorporate
both local and long-distance information

Results and Future work

Results Insights and Future works

• GraphSAGE performs the best across all metrics

• The sparsity of the adjacency matrix is the
limitation for MF

• Node2vec can achieve a decent performance, but it
only consider the graph structure

• Graph convolutional methods outperform the
baseline models, MF and Node2vec

Thank you for your listening

Products’ text-

embedding features

Users’ RFM

aggregated features

Node2Vec

embedding features

⧺

Internal NCF-

inspired

embeddings

⧺

Linear projection

to hidden_dim

Linear projection

to hidden_dim

Stacked graph

convolutional

layers (GAT or

GraphSAGE),

ReLU activation.

+

+

User

representation

Product

representation

Interaction

function (MLP)

Graph

Edges

Label

Edges

Predicted

probability

Binary cross

entropy loss

Data

tensors

Learnable

parameters ⧺ Concatenate + Element-wise sum

Optional

	Slide 1: Link Prediction: Product Recommendation for Instacart CSE 6240 Web Search and Text Mining Project Final Presentation
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction and Motivation
	Slide 5: Dataset
	Slide 6: Dataset Introduction
	Slide 7: Data Preprocessing
	Slide 8: Methods
	Slide 9: Models
	Slide 10: Matrix Factorization (MF)
	Slide 11: Node2vec
	Slide 12: GraphSAGE vs Graph Attention Network (GAT)
	Slide 13: Architecture of GNN models for link prediction
	Slide 14: Experiments and results
	Slide 15: GNN models experiment setup
	Slide 16: Experiment #1 results
	Slide 17: Experiment 2 result: GraphSAGE Depth and Size
	Slide 18: Experiment 3: Graph Attention Network (GAT)
	Slide 19: Results and Future work
	Slide 20: Thank you for your listening
	Slide 21

