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Introduction



• We aim to use the Instacart dataset to develop a user-product recommendation 
system

• Frame problem as a bipartite graph link prediction problem
• Two classes of nodes representing users and products

• Edges between a user node and a product node represent a user purchasing a product

• Successfully predicting edges between nodes, and recommending appropriate 
items, can increase user satisfaction and potentially increase app usage

Introduction and Motivation



Dataset



Dataset Introduction

• Kaggle – Instacart Market Basket Analysis

• Our data consists of purchases made by users on Instacart

• 49K product nodes and 101K user nodes

• 9.3 million user-product pairs (edges)

• Data is grouped into orders that each contain a user and the 

products purchased in the order

• Data contains information about purchase time, time since previous 

order, add-to-cart sequence, and product repurchase

https://www.kaggle.com/competitions/instacart-market-basket-analysis/data


• Step 1: Remove users with fewer than 10 purchases

• Step 2: Generate user features by aggregating order data (RFM - Recency, Frequency, Monetary) 
and generate item features by creating text embeddings from product descriptions

• Step 3: Employ temporal splitting and only keep new links as positive labels

• Label edges: The test label contains only the new product in the most recent basket (t) for each user, the 
validation label in the second most recent basket (t-1) for each user, and the train label in the third most 
recent basket (t-2) for each user. These are positive labels.

• Graph edges: All products bought before the basket that was used as labels

• Step 4: Generate negative samples with rate = 1, meaning for each user, we generate a random 
negative sample for each positive labels in the label edges described above. 

Data Preprocessing



Methods



1) Matrix Factorization (MF) - baseline

2) Node2vec - baseline

3) GraphSAGE

4) Graph Attention Network (GAT)

Models



• Use train set of positive and negative samples to create a sparse adjacency 
matrix

• Au,p=1 if an edge exists between user u and product p, 0 otherwise

• Implement Stochastic Gradient Descent on the adjacency matrix to generate 128-
dimensional user and product embeddings

• For each edge in the test set, perform a simple cross-product between the user 
and product embedding to generate a predicted score for the user-product pair

• If the predicted score is greater than a predetermined threshold value, then we predict a link; 
otherwise, we do not predict a link

• We define the threshold value 0<t<1 such that the performance on the test data is 
maximized; t=0.53

• ROC-AUC score on test data: 0.822

Matrix Factorization (MF)



• Trained a Node2vec model for embedding each node
• Set p=1, q=2 because we expect users would be more interested in neighbor items

• Set the dimension of embedding as 128

• Generated link embeddings by concatenating Node2vec node embeddings for 
each link

• The dimension of link embeddings is 256

• Trained an MLP Classifier to predict the edges existence
• Using the pre-processing train/val/test set of positive and negative edges

• ROC-AUC score on the test data: 0.935

Node2vec



GraphSAGE vs Graph Attention Network (GAT)

GraphSAGE

• GraphSAGE learned a general transformation 
function to aggregate information from 
neighboring nodes and pass-on the processed 
information to the next layer.

• With more than 2 layers of SAGEConv, the model 
should be able to learn the patterns equivalent to 
any collaborative filtering approaches (e.g. user –
item – other user). 

• GraphSAGE is also easy to train since it take a 
sample from the neighboring nodes instead of the 
whole graph.

• We use an implementation of Hamilton et al (2017) 
in the pytorch-geometric library.

Graph Attention Network

• Similar to GraphSAGE, Graph Attention 
Convolutional layer (GATConv) takes information 
from neighboring nodes, process it, and pass on to 
the next layer.

• The difference is GATConv can use the attention 
mechanism to learn the importance of neighboring 
nodes to process accordingly.

• In addition, using multi-head also enable learning 
more complex patterns => Overall GAT is a more 
flexible network.

• We use the implementation created by Brody et al 
(2021), where they generalize the original work 
from Morris et al (2018) and demonstrated 
superior performance

We chose GraphSAGE and GAT to implement due to their end-to-end nature, which in theory is superior 
compared to Node2Vec models, and the flexibility to customize the interaction function, which is superior 
compared to the matrix factorization approach.



Architecture of GNN models for link prediction
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Experiments and results



GNN models experiment setup

Experiments Model specifications
Training 

specifications

#1: Test option 

combinations

• Using GraphSAGE, mean agg, fixed convolutional Depth = 3 and Hidden Size = 256.

• Architecture options: 
• Vanilla GraphSAGE
• GraphSAGE + NCF-inspired Embeddings (add learnable user and item 

embeddings to increase expressiveness).
• Feature options: 

• Baseline Features Approach: Only input generated user and product features.
• Advanced Features: Concatenate with additional features from Node2vec.

Early stopping: when 

validation roc_auc is worse 
than previous epoch 

Hardware: Google Colab 
GPU (15 GB of GPU RAM)

#2: GraphSAGE 

tuning 

• Depth and Size tuning: 

• Depth - number of graph convolutional layers: [2, 3]
• Size - hidden layer dimension: [128, 256, 512]

#3: Graph 

Attention Network 
tuning 

• Size and Attention heads tuning: 

• Size - hidden layer dimension: [128, 256, 512]
• Number of attention heads: [1, 2, 4, 8]

Hardware: Google Colab 

premium GPU (40 GB of 
GPU RAM). 

Evaluation metrics: ROC-AUC (main), and other classification metrics: F1-score, Precision, Recall

Ranking metrics such as MRR, MAE were not used for evaluation due to the high complexity of predicting and ranking all 50,000 products for each user.



Experiment #1 results

Baseline Features Advanced Features

Vanilla GraphSAGE AUC = 0.920 AUC = 0.951

GraphSAGE + NCF 

Embeddings
AUC = 0.932 AUC = 0.937

• Vanilla GraphSAGE + Advanced features seems to 
be the best configuration. This might stem from the 
random walk help incorporate long-distance 
information.

• GraphSAGE + NCF embedding models fit very well 
and very quick to the training set. But they also 
easily overfit and stop in just 3-4 epochs.

• Vanilla GraphSAGE is by far the worst performer, not 
even achieve Node2Vec Baseline performance.

• We also found that the models’ performance on 
validation set closely resemble their performance 
on the test set.



We tuned the chosen Vanilla GraphSAGE model w/ Advanced Features further by optimizing the number of layers 
and the hidden size

Experiment 2 result: GraphSAGE Depth and Size

Hidden Size (# Layers = 2) AUC

128 0.951

256 0.952

512 0.951

# Layers (Hidden = 256) AUC

2 0.952

3 0.951

• Two layers and Hidden 
Size = 256 is the best 
configuration

• Hidden Size = 128 train 
faster but slightly more 
overfit to the train set 
=> worse performance 
on the validation set



Experiment 3: Graph Attention Network (GAT)

• Best GAT had hidden size of 256 and 4 attention heads

• Other GAT configurations stop much earlier with lower 
performance, which indicate they have lower 
expressiveness and/or overfit more to the training set

• The best GraphSAGE model outperformed the best GAT 
model by a large margin

We chose to use a Vanilla GAT with advanced features, since we found this worked well with GraphSAGE



• Good input features is pivotal in improving 
performance of Graph convolutional models => 
More extensive feature engineering.

• GAT’s performance was not as good as 
GraphSAGE => Additional experimentation with 
more expressive GAT model and further hyper 
parameter tuning.

• Combining normal features with Node2Vec 
embedding features achieve the best results so far, 
we hypothesized that it’s due to long-distance 
information in the random walks => Worth 
exploring other architectures that can incorporate 
both local and long-distance information

Results and Future work

Results Insights and Future works

• GraphSAGE performs the best across all metrics

• The sparsity of the adjacency matrix is the 
limitation for MF

• Node2vec can achieve a decent performance, but it 
only consider the graph structure

• Graph convolutional methods outperform the 
baseline models, MF and Node2vec



Thank you for your listening
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