
Link Prediction: Product Recommendation on Instacart
Course project for CSE 6240: Web Search and Text Mining, Spring 2023

Kien Tran
Georgia Institute of Technology

Atlanta, Georgia, USA
ktran332@gatech.edu

Tanmay Kenjale
Georgia Institute of Technology

Atlanta, Georgia, USA
tkenjale3@gatech.edu

Yu-Ching Chen
Georgia Institute of Technology

Atlanta, Georgia, USA
ychen3317@gatech.edu

Chase Harrington
Georgia Institute of Technology

Atlanta, Georgia, USA
charrington30@gatech.edu

ABSTRACT
Product recommendation systems are one of the most popular appli-
cations of link prediction. This project reviews various approaches
to the link prediction task, which can be broadly described in two
steps: creating embeddings/feature vectors to represent each node
and using the node embedding to predict the probability of a link be-
tween two nodes. To best apply link prediction tasks to real-world
data, we use the Instacart Market Basket Analysis dataset from
Kaggle. In this paper, we implement four established link prediction
methods to recommend products to users in the Instacart dataset:
two basline approaches (Matrix Factorization and Node2vec), as
well as two more novel approaches (GraphSAGE and Graph At-
tention Network). We find that GraphSAGE performs the best of
the four approaches, achieving an Area-Under-the-Curve score of
0.952.

1 INTRODUCTION
In this project, we seek to use the Instacart dataset to construct
a tool that can predict which food products will be purchased by
users. We frame this problem as a bipartite graph, with one cluster
of nodes being users and the other cluster of nodes being products.
Edges connect users to products if that product was purchased by
that user. Our goal becomes a link prediction problem; we aim to
use the structure of the graph to predict which products users are
most likely to purchase.

We employ four existing methods to predict links between users
and products: Matrix Factorization, Node2vec, GraphSAGE, and
Graph Attention Networks. Our experiment results display that
the four approaches can achieve decent performance while graph
convolutional methods outperformed the two baseline methods,
matrix factorization and Node2vec. By successfully creating a link
prediction algorithm using the Instacart dataset, users will be able to
receive more customized and applicable product recommendations
in their Instacart app. More accurate recommendations will increase
user satisfaction and potentially increase usage of the app.

2 LITERATURE SURVEY / BASELINES
Approaches to the link prediction task can broadly be described in
two steps:

(1) Create some embeddings/feature vectors to represent each
node (encode)

(2) Use the node embedding to predict the probability of a link
between two nodes

Li and Chen [4] proposed a graph kernel framework for a product
recommendation problem between users and items and conducted
experiments on three real-world data sets. The proposed approach
includes constructing the user-item graph from transaction histo-
ries, defining the pairwise similarities using random walks path,
classifying the positive transaction with one-class SVM algorithm,
and ranking the top 10 recommendations for each users. The per-
formance of the graph kernel method is slightly better than other
existing approaches, comparing precision (0.0286), recall (0.1461),
and f-measure (0.0049). Although the graph kernel procedure made
an improvement in link prediction for user-item bipartite graph,
we would like to figure out other up-to-date methods with higher
accuracy.

Within the domain of recommendation systems, Matrix factor-
ization (MF) is one of the most notable approaches. MF creates
embeddings by factorizing the adjacency matrix and using a simple
cross-product operation to predict links between user nodes and
item nodes. Menon and Elkan [5] implement such an approach and
is able to achieve an AUC score of as high as 0.812, where AUC is
defined as the Area under the ROC Curve. This value indicates high
discriminative ability, and it is suggestive that a matrix factorization
approach can be highly accurate for link prediction.

There are multiple approaches to create unsupervised or self-
supervised embeddings for link prediction task. One popular ap-
proach proposed by Grover and Leskovec [2] is Node2vec. This
method utilizes a biased randomwalk strategy to generate node em-
beddings. The random walk is controlled by two parameters, which
allows the random walk to balance between bread-first search and
depth-first search. The results and paths of the repeated random
walks are fed through a neural network to output embeddings with
structural information for each node. The experiment of link pre-
diction with Node2vec embeddings was also demonstrated in the
study [2]. The result, AUC scores, is improved compared with the
other feature learning algorithms. However, Node2vec is sensitive
to the random walk parameters and it can only consider structural
features without taking other node features into account. Despite of
these limitations, this approach will be a decent baseline to compare
against our other methods because of its popularity and simplicity.

On the front of Graph-based supervised methods, multiple ad-
vances have been made to create end-to-end models that can be



trained on supervised tasks. Kipf and Welling [8] proposed the use
of graph convolutional networks to aggregate and process infor-
mation from the embeddings of nodes in the local neighborhood.
Hamilton et al. [9] generalize this approach with different (includ-
ing learnable) aggregation methods and make the task inductive,
which means it can be used on new nodes or even new graphs.

Hamilton et al. [3] introduces a framework, GraphSAGE, which
can learn a better node embedding by aggregating information
from local neighbors of nodes. Also, Saxena et al. [7] built up a rec-
ommendation system for financial products, such as funds and ETF.
It deployed the GraphSAGE model for learning representations and
for predicting the probability that a holder would be interested a
financial product (link prediction). The scheme could be applied
to our task by predicting the probabilities that a user would buy
a product on Instacart. With significant improvements from the
model in [7], we expect to build up an effective product recommen-
dation system by implementing GraphSAGE on our dataset. We
will specify the details of this method in the Methods section.

Velickovic et al. [6] incorporates the attention mechanism to help
a node attend to its neighbors’ features and improve performance
further. The approach introduced the Graph Attention Network
(GAT), which utilizes graph attention layers in its network. The
layer inputs node features and performs masked attention, which
allows nodes to attend to just the nodes within a local neighbor-
hood. This preserves structural information. The resulting attention
coefficients are linearly combined with the input features and a
weight matrix to output a new feature set for each node. This can be
extended with multi-head attention, which stabilizes model learn-
ing. The graph attention layer can be used for prediction or its
outputs can be fed into a separate model. The GAT architecture
was shown to increase performance in inductive learning by about
27% over GraphSAGE.

Most of the literature on Graph-based link prediction does not
specifically address bipartite graphs, which is relevant for recom-
mendation systems. From our survey, we find that researchers [7]
usually use the standard version of Graph Neural Network (GNN)
architectures for bipartite graphs without major modification.

3 DATASET DESCRIPTION
The dataset that we are using for this project is the Instacart Mar-
ket Basket Analysis dataset from Kaggle [1]. The Kaggle dataset
contains seven .csv data files; the two that we are concerned with
are ’orders.csv,’ which contains order IDs and user IDs among other
features, and ’order_products_*.csv,’ which contains order IDs and
product IDs. Before constructing our graph, we filter out users who
have fewer than 10 orders to reduce the amount of noise in the
graph.

The resulting dataset consists of user and product nodes. There
are a total of 49,443 product nodes and 101,696 user nodes in the
graph. The products are organized in 21 departments, each of which
corresponds to different types of products such as produce, baked
goods, frozen food, etc. There are 9,337,086 edges between the
users and products, which correspond to whether or not the user
purchased the product. After calculating the degree and eigenvector
centrality of the nodes in the graph, we found that the products with
the highest centrality measures were in the produce and dairy/eggs

departments. This tells us which product categories are the most
purchased.

The dataset included multiple features for each purchase, in-
cluding the order day of week, order hour of day, number of days
elapsed since the last order, the sequence of the product purchase
in the order, and whether the product has been purchased by the
user before. We calculated a weight feature between 0 and 1 for
each edge, with a higher weight meaning that the user purchased
the product more times than if it was a lower weight. We did this
by dividing the number of times a user purchased a product by the
number of orders the user made.

We also generated features for each product by converted the
product description into text embedding vectors with a pretrained
sentence transformer. Additionally, we created users features with
22 dimensions by aggregating the frequency, recency, and monetary
value of orders. The product features, and user features created in
this step will be called "baseline features" from now on and they
will be utilized in the GraphSAGE and Graph Attention models.

4 DESCRIBE THE EXPERIMENTAL SETTINGS
We formulate the problem as a link prediction task between a user
and an item. Positive samples are created with existing user-item
links. Negative samples are generated with sample rate = 1. Thus,
we have a balanced dataset for the binary classification task.

We employ temporal splitting at a user-level, described by Yang
et al. [10], to create 3 datasets: Train, Validation, and Test. To be
more specific, we first created the positive label edges for each
user by using the new products in the most recent basket (t) for
positive test labels, the second most recent basket (t-1) for positive
validation labels, and the third most recent basket (t-2) for positive
train labels. Then, we constructed the graph edges for each set
(train/validation/test) using all products bought before the basket
that was used to construct the label sets. Lastly, for each positive
label in the label set, we generated a negative sample between the
same user with another random product, thus creating a balanced
dataset for the link prediction model. We chose to only use new
products to increase the difficulty of the prediction problem since
re-purchase is a popular behavior with grocery products.

In terms of evaluation metrics, we used ROC-AUC scores as the
main metric to evaluate all models’ ability to rank products in the
test set. In addition, we also calculate classification metrics such as
F1-score, Precision, and Recall for additional context. Traditional
ranking metrics such asMRR andMAPwere not used for evaluation
due to the high complexity of predicting and ranking all 49,443
products for each of the 101,696 users.

Regarding computational resources, we used use High-RAM,
standard GPU instances in Google Colab to train our Node2Vec and
GraphSAGEmodels, and premiumGPU instances (40GB GPU RAM)
to train Graph Attention Networkmodels due to their high-memory
requirement.

5 METHODS
We implemented 4 methods and compared the results to understand
their strengths and weaknesses. Below are the methods we plan on
implementing for our recommendation problem:

2



Figure 1: Link prediction model architecture for GraphSAGE and Graph Attention Network

5.1 Matrix Factorization
As a baseline, we implemented a simple matrix factorization ap-
proach to generate embeddings for nodes [5]. We begin by con-
structing the adjacency matrix for our graph, which is bipartite and
sparse. We implement a Stochastic Gradient Descent (SGD) matrix
factorization algorithm that introduces bias terms in order to help
reduce sparsity and account for the popularity of certain individual
items. Once the matrix is factorized, we obtain embeddings for each
user and product, and we perform a simple cross-product operation
on test set user-product pairs to predict links between them. A high
cross-product score indicates a high likelihood of a link existing.
This score was used to rank the products in the test set for eval-
uation. For classification metrics, we define and tune a threshold
value; if the embedding cross-product is higher than this threshold,
then we predict a link, and if the embedding cross-product is less
than this threshold, we do not predict a link.

5.2 Node2vec +MLP
We also used Node2vec as a baseline model in our comparison [2].
We used PyTorch Geometric’s implementation of the method. We
imported all training edges into PyTorch and trained a Node2vec
model on the graph with p=1 and q=2 because we regard the prob-
lem as breadth-first search as the users would be more interested
in neighbor items. Then, we obtained embeddings for each node
from the trained Node2vec model. Furthermore, we concatenated
the node embeddings as edge embeddings for positive and negative
links in training set. Finally, we trained a shallow Multi-Layer Per-
ceptron classifier (MLP) using the popular scikit-learn library with
the concatenated embedding of user-item pairs as input to retrieve
the probability of link existence. We evaluated the model similarly
as described above and present the results in the following section.

Also, the Node2vec embeddings will be used as advanced features
in the GraphSAGE and GAT models.

5.3 GraphSAGE
Figure 1 shows the model architecture that we used to adapt Graph-
SAGE and Graph Attention Network for the link prediction problem.
The node features consisted of the user and item features that we
generated as mentioned in section 3. We then linearly projected
these features to a hidden dimension. We inputted the hidden state
into our SAGEConv layers with mean aggregation to output final
representations for users and items. These representations pass
through an interaction function to output a probability that a user
will purchase an item in the future. Our model was trained with
Binary Cross Entropy Loss. During our testing, we experimented
with various parameters and techniques. One test was concatenat-
ing our initial user and item features with Node2vec embeddings to
see if this provided better results. Another test we conducted was
adding additional user and item embeddings to the hidden state
similar to Neural Collaborative Filtering to potentially alleviate the
cold-start problem. We also tested model depths of 2 and 3 and we
tested hidden layer dimensions of 128, 256, and 512.

5.4 Graph Attention Network
We also implemented a GAT-based model as discussed in [6] and in
the literature review. While the paper tested GAT on node classifi-
cation tasks, we apply it to link prediction on the Instacart dataset
by simply modifying the output layer of the model. Our procedure
of implementing and testing is very similar to our GraphSAGE pro-
cedure mentioned above and simply switches the SAGEConv layers
with PyTorch GATv2Conv layers. We tested different hidden layer
sizes (128, 256, 512) and number of attention heads (1, 2, 4, 8) to

3



see how this affects model performance. We also use the Node2vec
embedding concatenation technique as used in GraphSAGE. We
will evaluate model performance in the same manner as discussed
above.

6 EXPERIMENTS AND RESULTS
We summarize our experiment results for link prediction on In-
stacart dataset in Table 1.

Table 1: Comparing Precision, Recall, F1-measure, and AUC
scores between Matrix Factorization, Node2vec, GraphSAGE,
and Graph Attention Network.

Models Precision Recall F1-measure AUC scores

MF 0.825 0.819 0.822 0.822
Node2vec + MLP 0.860 0.864 0.862 0.935
GraphSAGE 0.863 0.912 0.889 0.952
GAT-based 0.854 0.905 0.879 0.947

6.1 Matrix Factorization
The matrix factorization approach performed the worst of the four
models that we developed, with an AUC score of 0.822. This is
partially to be expected, as matrix factorization cannot always
capture the complexity of graphs as well as more advanced methods.
Nonetheless, this result is still adequate, and it serves as a high
baseline for methods to follow.

6.2 Node2vec +MLP
On the other hand, the Node2vec + MLP approach achieved good
performance with an AUC score of 0.935. This result shows that
the Node2vec embedding incorporates a lot of useful information
about the graphical structure of the data for the link prediction task.
We use these baseline embeddings for our future models.

6.3 GraphSAGE
For the GraphSAGE model, we conducted several combinations
of settings described in the previous section. The model that per-
formed the best had 2 layers, used Node2vec embeddings concate-
nated with the initial features (advanced features), used 256 neurons
in each hidden layer, and used mean as the aggregation function.
We achieved an AUC score of 0.952.

Our worst performer was the vanilla GraphSAGE without ad-
vanced features, showing the importance of this initialization. We
also found that adding NCF-inspired embeddings tended to fit very
well to the training data quickly, but they led to overfitting. It is
expected that GraphSAGE performs better than the baseline mod-
els because it is able to incorporate node features and because it
can capture more complex relationships with more layers of graph
convolution. It also has a good initialization by using Node2vec
embeddings, which already capture the graph’s structural informa-
tion.

Figure 2: GraphSAGE comparison between baseline features
and advanced features and between regular embeddings and
NCF embeddings

6.4 Graph Attention Network
Finally, we conducted experiments with GATwith the same settings
as explained in the GraphSAGE experiments. The best GAT model
we got during our experiment used 4 attention head and 512 neurons
in each hidden layer. We achieved the an AUC score of 0.947. This is
lower than that of our best GraphSAGE model, which goes against
our research and expectations.

Figure 3: Graph Attention Network comparison between hid-
den dimension sizes and number of attention heads

7 CONCLUSION AND FUTUREWORK
In conclusion, our GraphSAGE model performed better on In-
stacart product recommendation than our Graph Attention Net-
work, Node2vec, and Matrix Factorization models. We expected our
GNN-based models to perform better than our baselines, and this
was confirmed by our results.

4



Matrix Factorization was limited by the sparsity of the graph ad-
jacency matrix. When the matrix is extremely sparse, capturing the
structure of the graph is difficult, particularly when compounded
with temporal factors. Factorizing is also extremely computation-
ally expensive. The performance of the model is the weakest of the
four models, although it is by no means weak when standing alone.

Node2vec performed significantly better than Matrix Factoriza-
tion. However, this method only includes the graph structure of as
input and cannot consider node features. This limits its performance,
but the extracted embeddings proved useful for our GNN-based
models.

Our GAT model performed worse than our GraphSAGE model.
We propose that additional experimentation and hyperparameter
tuning should be done on GAT to achieve a better product recom-
mendation performance, sincewewere limited by time and compute
resources. We did find that using Node2vec features helped both
our GraphSAGE and GAT models greatly. We hypothesize that
since Node2vec captures long-distance, graphical information in
its random walks, it is able to provide a good feature set for GNN-
based models. It is worth exploring other model architectures and
techniques that can better capture local and long-distance graphi-
cal information for more accurate product recommendations. We
also found that the user and item features we engineered had a
strong impact on model performance. This leads us to believe that
more extensive feature engineering should be tested for better link
prediction.

Further research into link prediction for product recommenda-
tion will increase user satisfaction, engagement, and increase our
understanding of customer behavior.

8 CONTRIBUTION
All team members have contributed a similar amount of effort.

REFERENCES
[1] 2017. “The Instacart Online Grocery Shopping Dataset 2017”, Access from

https://www.kaggle.com/c/instacart-market-basket-analysis on Feb 25, 2023.
[2] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. arXiv:1607.00653 [cs.SI]
[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[4] Xin Li and Hsinchun Chen. 2013. Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach. Decision Support
Systems 54, 2 (2013), 880–890.

[5] A.K. Menon and C Elkan. 2011. Link Prediction via Matrix Factorization. Machine
Learning and Knowledge Discovery in Databases (2011).

[6] Arantxa Casanova Adriana Romero Pietro Liò Yoshua Bengio Petar Veličković,
Guillem Cucurull. 2017. Graph Attention Networks. arxiv preprint
arXiv:1710.10903 (2017).

[7] Rachna Saxena, Abhijeet Kumar, and Mridul Mishra. 2022. Holder Recommen-
dations using Graph Representation Learning & Link Prediction. arXiv preprint
arXiv:2212.09624 (2022).

[8] Max Welling Thomas N. Kipf. 2016. Semi-Supervised Classification with Graph
Convolutional Networks. arxiv preprint arXiv:1609.02907 (2016).

[9] Jure Leskovec William L. Hamilton, Rex Ying. 2017. Inductive Representation
Learning on Large Graphs. arxiv preprint arXiv:1706.02216 (2017).

[10] Nitesh V. Chawla Yang Yang, Ryan N. Lichtenwalter. 2014. Evaluating link
prediction methods. DOI 10.1007/s10115-014-0789-0 (2014).

5

https://arxiv.org/abs/1607.00653

	Abstract
	1 Introduction
	2 Literature Survey / Baselines
	3 Dataset description
	4 Describe the Experimental Settings
	5 Methods
	5.1 Matrix Factorization
	5.2 Node2vec + MLP
	5.3 GraphSAGE
	5.4 Graph Attention Network

	6 Experiments and Results
	6.1 Matrix Factorization
	6.2 Node2vec + MLP
	6.3 GraphSAGE
	6.4 Graph Attention Network

	7 Conclusion and Future work
	8 Contribution
	References

