LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen

Presented by: Kien Tran, Ashish Dhiman

Agenda

- 1. Problem introduction
- 2. Background
- 3. Method
- 4. Experimental Analysis
- 5. Strengths and Weaknesses
- 6. Further developments

Problem introduction

Development of Large Language Models (LLMs)

Problems with Foundation LLMs

- General-purpose i.e. not task-specific
- VERY LARGE Models

Domain Adaptation

Domain Adaptation is a type of **transfer learning** that involves training a model with **data from a source domain**.

Examples:

Chat Conversation

Code Generation

Problem Statement: Fine-tuning LLMs

Base model

Full Fine-tuning (Adaptation)

Parameter-Efficient Adaptation

Parameters

 Φ_0

GPT4, LLaMA, etc.

Adapting Ojective

- Large hardware requirements
- Costly training, storage, and inference

$$\max_{\Phi} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}(y_t|x, y_{< t}) \right)$$

Adapting to domain-specific dataset Z

$$\max_{\Theta} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} \log \left(p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t|x, y_{< t}) \right)$$

Background

Existing Methods & Limitations (1/2)

Methods

Prompt Engineering

Describe the **instructions** and **examples** of the task (one-shot, few-shots learning) **with words**

Continuous prompts (e.g. Li & Liang, 2021)

Instead of discrete prompts (words), use continuous prompts (trainable special vectors)

Limitations

- Unreliable performance ("prompt engineering is an art")
- Waste computing power processing prompts

- Valuable token space must be spent on prefix token embeddings
- Increase inference time
- Not so sure regarding scalability

Existing Methods & Limitations (2/2)

Methods

Adapter-based (e.g. Houlsby et al., 2019)

Insert low-rank, trainable adapter layers between existing layers

Limitations

- Multi-headed attention weights was not changed
- Make the model deeper, thus introduce additional latency during inference
- Not able to out-perform full fine-tuning baseline

Method

Why do we need it?

• It's too expensive to fine-tune all parameters in a large model.

Are the fine-tuning updates full rank?

What is full rank vs low rank matrix?

- Rank of a matrix, (r) is the number of linearly independent columns/rows
- For a full rank matrix, r = lowest dimension of the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Use low rank decomposition for fine tuning updates

$$h = W_0 x + \Delta W x = W_0 x + BAx$$
$$B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}, r \ll \min(d, k)$$

LoRA for Transformer

- Weight matrices of linear layers in Transformer achtictecture:
 - W_Q , W_V , W_k , W_O
- Apply Low rank decomposition to these matrices while fine tuning

-
$$W_Q = []_{100,100} = B_{100,3} A_{3,100}$$

3*100*2 vs 100²

Experimental Analysis

Experimental Setup

Baseline methods

- Fine-tune
- Bias only
- Prefix-embedding tuning
 - injects special tokens alongside the input tokens
- Prefix-layer tuning
 - learn the Prefix-embedding after every layer.
- Adapter tuning
 - inserts adapter layers between the self-attention module (and the MLP module) and the subsequent residual connection.

Baseline models

- BERT
- RoBERTa
- GPT 2
- GPT 3

Results: RoBERTa

Model & Method	# Trainable Parameters		SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	$87.1_{\pm.0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
RoBbase (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm.3}$	$\textbf{88.4}_{\pm.1}$	$62.6 \scriptstyle{\pm .9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5 \scriptstyle{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm1.2}$	$\textbf{93.3}_{\pm .3}$	$90.8 \scriptstyle{\pm .1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{lood} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	$\textbf{87.4}_{\pm 2.5}$	$\textbf{92.6}_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5 $_{\pm .3}$	$96.6_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$		$89.9_{\pm.5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB ₁ (Adpt ^H)†	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm2.0}$	$94.7_{\pm.2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2_{\pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6 \scriptstyle{\pm .2}$	85.2 $_{\pm 1.1}$	$\textbf{92.3}_{\pm.5}$	88.6
DeB _{XXI} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$\textbf{91.9}_{\pm.2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	92.9 $_{\pm .1}$	94.9 _{±.4}	$\textbf{93.0}_{\pm.2}$	91.3

Table 2: RoBERTa_{base}, RoBERTa_{large}, and DeBERTa_{XXL} with different adaptation methods on the GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew's correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better for all metrics. * indicates numbers published in prior works. † indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

Results: GPT-3

Method	# of Trainable Parameters	WikiSQL Accuracy (%)	MNLI-m Accuracy (%)	SAMSum R1/R2/RL
GPT-3 175B (Fine-Tune)	175,255.8M	73.0	89.5	52.0/28.0/44.5
GPT-3 175B (Bias Only)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 175B (PrefixEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 175B (PrefixLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 175B (LoRA)	4.7M	73.4	91.3	52.1/28.3/44.3
GPT-3 175B (LoRA)	37.7M	73.8	91.7	53.2/29.2/45.0

Table 1: Logical form validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched and Rouge-1/2/L on SAMSum achieved by different GPT-3 adaptation methods. LoRA performs better than prior approaches, including conventional fine-tuning. The result on WikiSQL has a fluctuation of $\pm 0.3\%$ and MNLI-m $\pm 0.1\%$.

Ablation Study: Understanding Low-rank Update

Q1: Which weight to apply LoRA?

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\left egin{array}{c} W_q \ 8 \end{array} ight $	$\frac{W_k}{8}$	$rac{W_v}{8}$	$W_o 8$	W_q,W_k	W_q,W_v	$W_q,W_k,W_v,W_o \ 2$
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	70.4 91.0		73.0 91.0		71.4 91.3	73.7 91.3	73.7 91.7

- Training at least W_q and W_v to achieve good results
- Training all attention weights gives the best results on the same parameter budget

Q2: How to choose rank **r** for LoRA?

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$ W_q $	68.8	69.6	70.5	70.4	70.0
	W_q, \hat{W}_v	73.4	73.3	73.7	73.8	73.5
	$\mid W_q, W_k, W_v, W_o \mid$	74.1	73.7	74.0	74.0	73.9
	$ W_a $	90.7	90.9	91.1	90.7	90.7
MultiNLI (±0.1%)	W_q, W_v	91.3	91.4	91.3	91.6	91.4
	$\mid W_q, W_k, W_v, W_o \mid$	91.2	91.7	91.7	91.5	91.4
·						

 Only r = 1 already enable very good results

Strengths and Weaknesses

Strengths and Weaknesses

Strengths

- 1. Innovative approach to fine-tuning with multiple practical advantages
 - Save on storage of multiple fine-tune models
 - Can merge the weight during inference, thus requiring no additional latency
 - Lower hardware requirements for tuning
- 2. Ablation studies prove that low-rank adaptation is effective, even with r = 1
- 3. A general method, can be applied to many problems and in combinations with other fine-tuning methods

Weaknesses

- 1. Lower hardware requirements, **but still high**: At least GPUs that have enough RAM to load the full base models
- 2. Deployment still needs same amount of memory (say 175B), only if you are deploying multiple models, do the savings kick in.
- 3. Adds decomposition rank 'r' as another hyperparameter to tune.
- 4. Ablation missing for cases where different weight matrices have different rank decompositions, say 2 or Q, 6 for V.

Further developments

Recent developments leveraging LoRA

Quantization (QLoRA)

Dettmers et al. (2023) combine LoRA with 4-bit quantization to reduce the memory requirement and improve computation efficientcy of fine tuning without sacrificing performance

Fine-tune Diffusion model*

- 2x faster fine-tuning of the Stable Diffusion model compared to Dreambooth
- Small model (1MB ~ 6MB vs GBs), enable sharing

Photo-realistic images

Cartoon images

^{*} cloneofsimo, Low-rank Adaptation for Fast Text-to-Image Diffusion Fine-tuning, https://github.com/cloneofsimo/lora 2023

Q&A

